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“An outlier is an observation which deviates so much from other
observations as to arouse suspicions that it was generated by a different
mechanism.”

– Hawkins, Identification of Outliers (1980)

Anomalies, often referred to as outliers, abnormalities, rare events, or deviants,
are data points or patterns in data that do not conform to a notion of normal
behavior. Anomaly detection, then, is the task of finding those patterns in data
that do not adhere to expected norms, given previous observations. The
capability to recognize or detect anomalous behavior can provide highly useful
insights across industries. Flagging unusual cases or enacting a planned
response when they occur can save businesses time, costs, and customers.
Hence, anomaly detection has found diverse applications in a variety of
domains, including IT analytics, network intrusion analytics, medical diagnostics,
financial fraud protection, manufacturing quality control, marketing and social
media analytics, and more.

Applications of Anomaly Detection
We’ll begin by taking a closer look at some possible use cases, before diving
into different approaches to anomaly detection in the next chapter.

Introduction
CHAPTER 1



Network Intrusion Detection
Network security is critical to running a modern viable business, yet all
computer systems suffer from security vulnerabilities which are both technically
difficult and economically punishing to resolve once exploited. Business IT
systems collect data about their own network traffic, user activity in the system,
types of connection requests, and more. While most activity will be benign and
routine, analysis of this data may provide insights into unusual (anomalous)
activity within the network after and ideally before a substantive attack. In
practice, the damage and cost incurred right after an intrusion event escalates
faster than most teams are able to mount an effective response. Thus, it
becomes critical to have special-purpose intrusion detection systems (IDSs) in
place that can surface potential threat events and anomalous probing early and
in a reliable manner.

Medical Diagnosis
In many medical diagnosis applications, a variety of data points (e.g., X-rays,
MRIs, ECGs) indicative of health status are collected as part of diagnostic
processes. Some of these data points are also collected by end-user medical
devices (e.g., glucose monitors, pacemakers, smart watches). Anomaly
detection approaches can be applied to highlight situations of abnormal

Anomaly detection is relevant to several usecases - Network intrusion

detection, Medical diagnosis, Fraud detection and manufacturing defect

detection.



readings that may be indicative of health conditions or precursor signals of
medical incidents.

Fraud Detection
In 2018, fraud was estimated to have a global financial cost of over £3.89 trillion
(about $5 trillion USD). Within the financial services industry, it is critical for
service providers to quickly and correctly identify and react to fraudulent
transactions. In the most straightforward cases, a transaction may be identified
as fraudulent by comparison to the historical transactions by a given party or to
all other transactions occurring within the same time period for a peer group.
Here, fraud can be cast as a deviation from normal transaction data and
addressed using anomaly detection approaches. Even as financial fraud is
further clustered into card-based, check-based, unauthorized account access-
based, or authorized payment-based categories, the core concepts of
baselining an individual’s standard behavior and looking for signals of unusual
activity apply.

Manufacturing Defect Detection
Within the manufacturing industry, an automated approach to the task of
detecting defects, particularly in items manufactured in large volumes, is vital to
quality assurance (QA). This task can be cast as an anomaly detection exercise,
where the goal is to identify manufactured items that significantly or even
slightly differ from ideal (normal) items that have passed QA tests. The amount
of acceptable deviation is determined by the company and customers, as well
as industry and regulatory standards.

Use-Case Example

ScoleMans has been making drywall panels for years and is the leading
regional supplier for construction companies. Occasionally, some of the
wall panels they produce have defects: cracks, chips at the edges,
paint/coating issues, etc. As part of their QA process, they capture both
RGB and thermal images of each produced panel, which their QA
engineers use to flag defective units. They want to automate this process;
i.e., develop tools that automatically identify these defects. This is
possible using a deep anomaly detection model. In particular, ScoleMans
can use an autoencoder or GAN-based model built with convolutional
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neural network blocks (see Chapter 3. Deep Learning for Anomaly
Detection for more information) to create a model of normal data based on
images of normal panels. This model can then be used to tag new images
as normal or abnormal.

Similarly, the task of predictive maintenance can be cast as an anomaly
detection problem. For example, anomaly detection approaches can be applied
to data from machine sensors (vibrations, temperature, drift, and more), where
abnormal sensor readings can be indicative of impending failures.

As these examples suggest, anomaly detection is useful in a variety of areas.
Detecting and correctly classifying as anomalous something previously unseen
is a challenging problem that has been tackled in many different ways over the
years. While there are many approaches, the traditional machine learning (ML)
techniques are suboptimal when it comes to high-dimensional data and
sequence datasets, because they fail to capture the complex structures in the
data.

This report, with its accompanying prototype, explores deep learning-based
approaches that first learn to model normal behavior and then exploit this
knowledge to identify anomalies. While they’re capable of yielding remarkable
results on complex and high-dimensional data, there are several factors that
influence the choice of approach when building an anomaly detection
application. We survey the options, highlighting their pros and cons.



In this chapter, we provide an overview of approaches to anomaly detection
based on the type of data available, how to evaluate an anomaly detection
model, how each approach constructs a model of normal behavior, and why
deep learning models are valuable. We conclude with a discussion of pitfalls
that may be encountered while deploying these models.

Anomaly Detection Approaches
Anomaly detection approaches can be categorized in terms of the type of data
needed to train the model. In most use cases, it is expected that anomalous
samples represent a very small percentage of the entire dataset. Thus, even
when labeled data is available, normal data samples are more readily available
than abnormal samples. This assumption is critical for most applications today.
In the following sections, we touch on how the availability of labeled data
impacts the choice of approach.

Supervised Learning
When learning with supervision, machines learn a function that maps input
features to outputs based on example input-output pairs. The goal of
supervised anomaly detection algorithms is to incorporate application-specific
knowledge into the anomaly detection process. With sufficient normal and
anomalous examples, the anomaly detection task can be reframed as a
classification task where the machines can learn to accurately predict whether a
given example is an anomaly or not. That said, for many anomaly detection use
cases the proportion of normal versus anomalous examples is highly
imbalanced; while there may be multiple anomalous classes, each of them
could be quite underrepresented.

Background
CHAPTER 2



This approach assumes that one has labeled examples for all types of
anomalies that could occur and can correctly classify them. In practice, this is
usually not the case, as anomalies can take many different forms, with novel
anomalies emerging at test time. Thus, approaches that generalize well and are
more effective at identifying previously unseen anomalies are preferable.

Unsupervised learning
With unsupervised learning, machines do not possess example input-output
pairs that allow it to learn a function that maps the input features to outputs.
Instead, they learn by finding structure within the input features. Because, as
mentioned previously, labeled anomalous data is relatively rare, unsupervised
approaches are more popular than supervised ones in the anomaly detection
field. That said, the nature of the anomalies one hopes to detect is often highly
specific. Thus, many of the anomalies found in a completely unsupervised
manner could correspond to noise, and may not be of interest for the task at
hand.

An illustration of supervised learning.



Semi-supervised learning
Semi-supervised learning approaches represent a sort of middle ground,
employing a set of methods that take advantage of large amounts of unlabeled
data as well as small amounts of labeled data. Many real-world anomaly
detection use cases are well suited to semi-supervised learning, in that there
are a huge number of normal examples available from which to learn, but
relatively few examples of the more unusual or abnormal classes of interest.
Following the assumption that most data points within an unlabeled dataset are
normal, one can train a robust model on an unlabeled dataset and evaluate its
performance (and tune the model’s parameters) using a small amount of labeled

data.[1]

An illustration of unsupervised learning.



This hybrid approach is well suited to applications like network intrusion
detection, where one may have multiple examples of the normal class and
some examples of intrusion classes, but new kinds of intrusions may arise over
time.

To give another example, consider X-ray screening for aviation or border
security. Anomalous items posing a security threat are not commonly
encountered and can take many forms. In addition, the nature of any anomaly
posing a potential threat may evolve due to a range of external factors.
Exemplary data of anomalies can therefore be difficult to obtain in any useful
quantity.

An illustration of semi-supervised learning



Such situations may require the determination of abnormal classes as well as
novel classes, for which little or no labeled data is available. In cases like these,
a semi-supervised classification approach that enables detection of both known
and previously unseen anomalies is an ideal solution.

Evaluating Models: Accuracy Is
Not Enough
As mentioned in the previous section, in anomaly detection applications it is
expected that the distribution between the normal and abnormal class(es) may
be highly skewed. This is commonly referred to as the class imbalance problem.
A model that learns from such skewed data may not be robust; it may be
accurate when classifying examples within the normal class, but perform poorly
when classifying anomalous examples.

For example, consider a dataset consisting of 1,000 images of luggage passing
through a security checkpoint. 950 images are of normal pieces of luggage, and
50 are abnormal. A classification model that always classifies an image as

Exemplary data in certain applications can be difficult to obtain



normal can achieve high overall accuracy for this dataset (95%), even though its
accuracy rate for classifying abnormal data is 0%.

Such a model may also misclassify normal examples as anomalous (false
positives, FP), or misclassify anomalous examples as normal ones (false
negatives, FN). As we consider both of these types of errors, it becomes
obvious that the traditional accuracy metric (total number of correct
classifications divided by total classifications) is insufficient in evaluating the
skill of an anomaly detection model.

Two important metrics have been introduced that provide a better measure of
model skill: precision and recall. Precision is defined as the number of true
positives (TP) divided by the number of true positives plus the number of false
positives (FP), while recall is the number of true positives divided by the
number of true positives plus the number of false negatives (FN). Depending on
the use case or application, it may be desirable to optimize for either precision
or recall.

Optimizing for precision may be useful when the cost of failure is low, or to
reduce human workload. Optimizing for high recall may be more appropriate
when the cost of a false negative is very high; for example, in airport security,
where it is better to flag many items for human inspection (low cost) in order to
avoid the much higher cost of incorrectly admitting a dangerous item onto a
flight. While there are several ways to optimize for precision or recall, the
manner in which a threshold is set can be used to reflect the precision and
recall preferences for each specific use case.

You now have an idea of why an unsupervised or semi-supervised
approach to anomaly detection is desirable, and what metrics are best to
use for evaluating these models. In the next section, we focus on semi-
supervised approaches and discuss how they work.

Anomaly Detection as Learning
Normal Behavior
The underlying strategy for most approaches to anomaly detection is to first
model normal behavior, and then exploit this knowledge to identify deviations



(anomalies). This approach typically falls under the semi-supervised learning
category and is accomplished through two steps in the anomaly detection loop.
The first step, referred to as the training step, involves building a model of
normal behavior using available data. Depending on the specific anomaly
detection method, this training data may contain both normal and abnormal data
points, or only normal data points (see Chapter 3. Deep Learning for Anomaly
Detection for additional details on anomaly detection methods). Based on this
model, an anomaly score is then assigned to each data point that represents a
measure of deviation from normal behavior.

The second step in the anomaly detection loop, the test step, introduces the
concept of threshold-based anomaly tagging. Based on the range of scores
assigned by the model, one can select a threshold rule that drives the anomaly
tagging process; e.g., scores above a given threshold are tagged as anomalies,
while those below it are tagged as normal. The idea of a threshold is valuable, as
it provides the analyst an easy lever with which to tune the “sensitivity” of the
anomaly tagging process. Interestingly, while most methods for anomaly

The training step in the anomaly detection loop: based on data (which

may or may not contain abnormal samples), the anomaly detection model

learns a model of normal behavior which it uses to assign anomaly

scores.



detection follow this general approach, they differ in how they model normal
behavior and generate anomaly scores.

To further illustrate this process, consider the scenario where the task is to
detect abnormal temperatures (e.g., spikes), given data from the temperature
sensors attached to servers in a data center. We can use a statistical approach
to solve this problem (see the table in the following section for an overview of
common methods). In step 1, we assume the samples follow a normal
distribution, and we can use sample data to learn the parameters of this
distribution (mean and variance). We assign an anomaly score based on a
sample’s deviation from the mean and set a threshold (e.g., any value more than
3 standard deviations from the mean is an anomaly). In step 2, we then tag all
new temperature readings and generate a report.

The test step in the anomaly detection loop.



Approaches to Modeling Normal
Behavior
Given the importance of the anomaly detection task, multiple approaches haveR
been proposed and rigorously studied over the last few decades. To provide a
high-level summary, we categorize the more popular techniques into four main
areas: clustering, nearest neighbor, classification, and statistical. For a detailed

survey of existing techniques, see [2]). The following table provides a summary
of the assumptions and anomaly scoring strategies employed by approaches
within each category, and some examples of each.

Anomaly
Detection
Method

Assumptions Anomaly Scoring Notable Examples

Clustering Normal data points belong to a cluster (or
lie close to its centroid) in the data while
anomalies do not belong to any clusters.

Distance from nearest
cluster centroid

Self-organizing maps (SOMs), k-
means clustering, expectation
maximization (EM)

Nearest
Neighbour

Normal data instances occur in dense
neighborhoods while anomalous data are
far from their nearest neighbors

Distance from _k_th
nearest neighbour

k-nearest neighbors (KNN)

Anomaly scoring



Anomaly
Detection
Method

Assumptions Anomaly Scoring Notable Examples

Classification A classifier can be learned which
distinguishes between normal and
anomalous with the given feature space

Labeled data exists for normal and
abnormal classes

A measure of classifier
estimate (likelihood)
that a data point
belongs to the normal
class

One-class support vector
machines (OCSVMs)

Statistical Given an assumed stochastic model,
normal data instances fall in high-
probability regions of the model while
abnormal data points lie in low-probability
regions

Probability that a data
point lies in a high-
probability region in
the assumed
distribution

Regression models (ARMA,
ARIMA)

Deep
learning

Given an assumed stochastic model,
normal data instances fall in high-
probability regions of the model while
abnormal data points lie in low-probability
regions

Probability that a data
point lies in a high-
probability region in
the assumed
distribution

autoencoders, sequence-to-
sequence models, generative
adversarial networks (GANs),
variational autoencoders (VAEs)

The majority of these approaches have been applied to univariate time series
data; a single data point generated by the same process at various time steps
(e.g., readings from a temperature sensor over time); and assume linear
relationships within the data. Examples include k-means clustering, ARMA,
ARIMA, etc. However, data is increasingly high-dimensional (e.g., multivariate
datasets, images, videos), and the detection of anomalies may require the joint
modeling of interactions between each variable. For these sorts of problems,
deep learning approaches (the focus of this report) such as autoencoders,
VAEs, sequence-to-sequence models, and GANs present some benefits.

Why Use Deep Learning for
Anomaly Detection?
Deep learning approaches, when applied to anomaly detection, offer several
advantages. First, these approaches are designed to work with multivariate and
high dimensional data. This makes it easy to integrate information from multiple
sources, and eliminates challenges associated with individually modeling
anomalies for each variable and aggregating the results. Deep learning
approaches are also well-adapted to jointly modeling the interactions between
multiple variables with respect to a given task and - beyond the specification of
generic hyperparameters (number of layers, units per layer, etc.) - deep learning
models require minimal tuning to achieve good results.

Performance is another advantage. Deep learning methods offer the opportunity
to model complex, nonlinear relationships within data, and leverage this for the
anomaly detection task. The performance of deep learning models can also



potentially scale with the availability of appropriate training data, making them
suitable for data-rich problems.

What Can Go Wrong?
There are a proliferation of algorithmic approaches that can help one tackle an
anomaly detection task and build solid models, at times even with just normal
samples. But do they really work? What could possibly go wrong? Here are
some of the issues that need to be considered:

Contaminated normal examples
In large-scale applications that have huge volumes of data, it’s possible that
within the large unlabeled dataset that’s considered the normal class, a small
percentage of the examples may actually be anomalous, or simply be poor
training examples. And while some models (like a one-class SVM or isolation
forest) can account for this, there are others that may not be robust to detecting
anomalies.

Computational complexity
Anomaly detection scenarios can sometimes have low latency requirements;
i.e., it may be necessary to be able to speedily retrain existing models as new
data becomes available, and perform inference. This can be computationally
expensive at scale, even for linear models for univariate data. Deep learning
models also incur additional compute costs to estimate their large number of
parameters. To address these issues, it is recommended to explore trade-offs
that balance the frequency of retraining and overall accuracy.

Human supervision
One major challenge with unsupervised and semi-supervised approaches is
that they can be noisy and may generate a large amount of false positives. In
turn, false positives incur labor costs associated with human review. Given
these costs, an important goal for anomaly detection systems is to incorporate
the results of human review (as labels) to improve model quality.

Definition of anomaly
In many data domains, the boundary between normal and anomalous behavior
is not precisely defined and is continually evolving. Unlike in other task domains
where dataset shift occurs sparingly, anomaly detection systems should
anticipate and account for (frequent) changes in the distribution of the data. In
many cases, this can be achieved by frequent retraining of the models.



Threshold selection
The process of selecting a good threshold value can be challenging. In a semi-
supervised setting (the approaches covered above), one has access to a pool of
labeled data. Using these labels, and some domain expertise, it is possible to
determine a suitable threshold. Specifically, one can explore the range of
anomaly scores for each data point in the validation set and select as a
threshold the point that yields the best performance metric (accuracy, precision,
recall). In the absence of labeled data, and assuming that most data points are
normal, one can use statistics such as standard deviation and percentiles to
infer a good threshold.

Interpretability
Deep learning methods for anomaly detection can be complex, leading to their
reputation as black box models. However, interpretability techniques such as
LIME (see our previous report, “Interpretability”) and Deep SHAP provide
opportunities for analysts to inspect their behavior and make them more
interpretable.

https://clients.fastforwardlabs.com/ff06/report
https://arxiv.org/abs/1705.07874


In this chapter, we will review a set of relevant deep learning model
architectures and how they can be applied to the task of anomaly detection. As
discussed in Chapter 2. Background, anomaly detection involves first teaching a
model to recognize normal behavior, then generating anomaly scores that can
be used to identify anomalous activity.

The deep learning approaches discussed here typically fall within a family of
encoder-decoder models: an encoder that learns to generate an internal
representation of the input data, and a decoder that attempts to reconstruct the
original input based on this internal representation. While the exact techniques
for encoding and decoding vary across models, the overall benefit they offer is
the ability to learn the distribution of normal input data and construct a measure
of anomaly respectively.

Autoencoders
Autoencoders are neural networks designed to learn a low-dimensional
representation, given some input data. They consist of two components: an
encoder that learns to map input data to a low-dimensional representation
(termed the bottleneck), and a decoder that learns to map this low-dimensional
representation back to the original input data. By structuring the learning
problem in this manner, the encoder network learns an efficient “compression”
function that maps input data to a salient lower-dimensional representation,
such that the decoder network is able to successfully reconstruct the original
input data. The model is trained by minimizing the reconstruction error, which is
the difference (mean squared error) between the original input and the
reconstructed output produced by the decoder. In practice, autoencoders have
been applied as a dimensionality reduction technique, as well as in other use
cases such as noise removal from images, image colorization, unsupervised
feature extraction, and data compression.

Deep Learning for Anomaly
Detection

CHAPTER 3



It is important to note that the mapping function learned by an autoencoder is
specific to the training data distribution. That is, an autoencoder will typically
not succeed at reconstructing data that is significantly different from the data it
has seen during training. As we will see later in this chapter, this property of
learning a distribution-specific mapping (as opposed to a generic linear
mapping) is particularly useful for the task of anomaly detection.

Modeling Normal Behavior and Anomaly
Scoring
Applying an autoencoder for anomaly detection follows the general principle of
first modeling normal behavior and subsequently generating an anomaly score
for each new data sample. To model normal behavior, we follow a semi-
supervised approach where we train the autoencoder on normal data samples.
This way, the model learns a mapping function that successfully reconstructs
normal data samples with a very small reconstruction error. This behavior is
replicated at test time, where the reconstruction error is small for normal data
samples, and large for abnormal data samples. To identify anomalies, we use the

The components of an autoencoder.



reconstruction error score as an anomaly score and flag samples with
reconstruction errors above a given threshold.

This process is illustrated in the figure above. As the autoencoder attempts to
reconstruct abnormal data, it does so in a manner that is weighted toward
normal samples (square shapes). The difference between what it reconstructs
and the input is the reconstruction error. We can specify a threshold and flag
anomalies as samples with a reconstruction error above a given threshold.

Variational Autoencoders
A variational autoencoder (VAE) is an extension of the autoencoder. Similar to
an autoencoder, it consists of an encoder and a decoder network component,
but it also includes important changes in the structure of the learning problem
to accommodate variational inference. As opposed to learning a mapping from
the input data to a fixed bottleneck vector (a point estimate), a VAE learns a
mapping from an input to a distribution, and learns to reconstruct the original
data by sampling from this distribution using a latent code. In Bayesian terms,
the prior is the distribution of the latent code, the likelihood is the distribution
of the input given the latent code, and the posterior is the distribution of the

The use of autoencoders for anomaly detection.



latent code, given our input. The components of a VAE serve to derive good
estimates for these terms.

The encoder network learns the parameters (mean and variance) of a
distribution that outputs a latent code vector Z, given the input data (posterior).
In other words, one can draw samples of the bottleneck vector that
“correspond” to samples from the input data. The nature of this distribution can
vary depending on the nature of the input data (e.g., while Gaussian
distributions are commonly used, Bernoulli distributions can be used if the
input data is known to be binary). On the other hand, the decoder learns a
distribution that outputs the original input data point (or something really close
to it), given a latent bottleneck sample (likelihood). Typically, an isotropic
Gaussian distribution is used to model this reconstruction space.

The VAE model is trained by minimizing the difference between the estimated
distribution produced by the model and the real distribution of the data. This
difference is estimated using the Kullback-Leibler divergence, which quantifies
the distance between two distributions by measuring how much information is
lost when one distribution is used to represent the other. Similar to
autoencoders, VAEs have been applied in use cases such as unsupervised
feature extraction, dimensionality reduction, image colorization, image
denoising, etc. In addition, given that they use model distributions, they can be
leveraged for controlled sample generation.

The probabilistic Bayesian components introduced in VAEs lead to a few useful
benefits. First, VAEs enable Bayesian inference; essentially, we can now sample
from the learned encoder distribution and decode samples that do not explicitly
exist in the original dataset, but belong to the same data distribution. Second,
VAEs learn a disentangled representation of a data distribution; i.e., a single unit
in the latent code is only sensitive to a single generative factor. This allows
some interpretability of the output of VAEs, as we can vary units in the latent
code for controlled generation of samples. Third, a VAE provides true probability
measures that offer a principled approach to quantifying uncertainty when
applied in practice (for example, the probability that a new data point belongs to
the distribution of normal data is 80%).



Modeling Normal Behavior and Anomaly
Scoring
Similar to an autoencoder, we begin by training the VAE on normal data samples.
At test time, we can compute an anomaly score in two ways. First, we can draw
samples of the latent code Z from the encoder given our input data, sample
reconstructed values from the decoder using Z, and compute a mean
reconstruction error. Anomalies are flagged based on some threshold on the
reconstruction error.

Alternatively, we can output a mean and a variance parameter from the decoder,
and compute the probability that the new data point belongs to the distribution
of normal data on which the model was trained. If the data point lies in a low-
density region (below some threshold), we flag that as an anomaly. We can do
this because we’re modeling a distribution as opposed to a point estimate.

A variational autoencoder.



Generative Adversarial Networks
Generative adversarial networks (GANs[3]) are neural networks designed to
learn a generative model of an input data distribution. In their classic
formulation, they’re composed of a pair of (typically feed-forward) neural
networks termed a generator, G, and discriminator, D. Both networks are trained
jointly and play a competitive skill game with the end goal of learning the
distribution of the input data, X.

The generator network G learns a mapping from random noise of a fixed
dimension (Z) to samples X_ that closely resemble members of the input data
distribution. The discriminator D learns to correctly discern real samples that
originated in the source data (X) from fake samples (X_) that are generated by G.
At each epoch during training, the parameters of G are updated to maximize its
ability to generate samples that are indistinguishable by D, while the parameters
of D are updated to maximize its ability to to correctly discern true samples X
from generated samples X_. As training progresses, G becomes proficient at

Anomaly scoring with a VAE: we output the mean reconstruction

probability (i.e., the probability that a sample belongs to the normal

data distribution).



producing samples that are similar to X, and D also upskills on the task of
distinguishing real from fake samples.

In this classic formulation of GANs, while G learns to model the source
distribution X well (it learns to map random noise from Z to the source
distribution), there is no straightforward approach that allows us to harness this
knowledge for controlled inference; i.e., to generate a sample that is similar to a
given known sample. While we can conduct a broad search over the latent
space with the goal of recovering the most representative latent noise vector
for an arbitrary sample, this process is compute-intensive and very slow in
practice.

To address these issues, recent research studies have explored new
formulations of GANs that enable just this sort of controlled adversarial

inference by introducing an encoder network, E (BiGANs[4]) with applications in

anomaly detection (See GANomaly[5][6]). In simple terms, the encoder learns
the reverse mapping of the generator; it learns to generate a fixed vector Z_,
given a sample. Given this change, the input to the discriminator is also
modified; the discriminator now takes in pairs of input that include the latent
representation (Z, and Z_), in addition to the data samples (X and X_). The

A traditional GAN.



encoder E is then jointly trained with the generator G; G learns an induced
distribution that outputs samples of X given a latent code Z, while E learns an
induced distribution that outputs Z, given a sample X.

Again, the mappings learned by components in the GAN are specific to the data
used in training. For example, the generator component of a GAN trained on
images of cars will always output an image that looks like a car, given any latent
code. At test time, we can leverage this property to infer how different a given
input sample is from the data distribution on which the model was trained.

Modeling Normal Behavior and Anomaly
Scoring
To model normal behavior, we train a BiGAN on normal data samples. At the end
of the training process, we have an encoder E that has learned a mapping from
data samples (X) to latent code space (Z_), a discriminator D that has learned to
distinguish real from generated data, and a generator G that has learned a
mapping from latent code space to sample space. Note that these mappings are
specific to the distribution of normal data that has been seen during training. At
test time, we perform the following steps to generate an anomaly score for a

A BiGAN.



given sample X. First, we obtain a latent space value Z_ from the encoder given
X, which is fed to the generator and yields a sample X_. Next, we can compute
an anomaly score based on the reconstruction loss (difference between X and
X_) and the discriminator loss (cross entropy loss or feature differences in the
last dense layer of the discriminator, given both X and X_).

Sequence-to-Sequence Models
Sequence-to-sequence models are a class of neural networks mainly designed
to learn mappings between data that are best represented as sequences. Data
containing sequences can be challenging as each token in a sequence may
have some form of temporal dependence on other tokens; a relationship that
has to be modeled to achieve good results. For example, consider the task of
language translation where a sequence of words in one language needs to be
mapped to a sequence of words in a different language. To excel at such a task,
a model must take into consideration the (contextual) location of each
word/token within the broader sentence; this allows it to generate an
appropriate translation (See our previous report on Natural Language Processing
to learn more about this area.)

A BiGAN applied to the task of anomaly detection.

https://clients.fastforwardlabs.com/ff11/report


On a high level, sequence-to-sequence models typically consist of an encoder,
E, that generates a hidden representation of the input tokens, and a decoder, D,
that takes in the encoder representation and sequentially generates a set of
output tokens. Traditionally, the encoder and decoder are composed of long
short-term memory (LSTM) blocks, that are particularly suitable for modeling
temporal relationships within input data tokens.

While sequence-to-sequence models excel at modeling data with temporal
dependence, they can be slow during inference; each individual token in the
model output is sequentially generated at each time step, where the total
number of steps is the length of the output token.

We can use this encoder-decoder structure for anomaly detection by revising
the sequence-to-sequence model to function like an autoencoder, training the
model to output the same tokens as the input, shifted by 1. This way, the
encoder learns to generate a hidden representation that allows the decoder to
reconstruct input data that is similar to examples seen in the training dataset.

Modeling Normal Behavior and Anomaly
Scoring

A sequence-to-sequence model.



To identify anomalies, we take a semi-supervised approach where we train the
sequence-to-sequence model on normal data. At test time, we can then
compare the difference (mean squared error) between the output sequence
generated by the model and its input. As in the approaches discussed
previously, we can use this value as an anomaly score.

One-Class Support Vector
Machines
In this section, we discuss one-class support vector machines (OCSVMs), a
non-deep learning approach to classification that we will use later (see Chapter
4. Prototype) as a baseline.

Traditionally, the goal of classification approaches is to help distinguish between
different classes, using some training data. However, consider a scenario where
we have data for only one class, and the goal is to determine whether test data
samples are similar to the training samples. OCSVMs were introduced for exactly
this sort of task: novelty detection, or the detection of unfamiliar samples. SVMs
have proven very popular for classification, and they introduced the use of
kernel functions to create nonlinear decision boundaries (hyperplanes) by
projecting data into a higher dimension. Similarly, OCSVMs learn a decision
function which specifies regions in the input data space where the probability
density of the data is high. An OCSVM model is trained with various
hyperparameters:

nu specifies the fraction of outliers (data samples that do not belong to our
class of interest) that we expect in our data.
kernel specifies the kernel type to be used in the algorithm; examples
include RBF, polynomial (poly), and linear. This enables SVMs to use a
nonlinear function to project the input data to a higher dimension.
gamma is a parameter of the RBF kernel type that controls the influence of
individual training samples; this affects the “smoothness” of the model.



Modeling Normal Behavior and Anomaly
Scoring
To apply OCSVM for anomaly detection, we train an OCSVM model using normal
data, or data containing a small fraction of abnormal samples. Within most
implementations of OCSVM, the model returns an estimate of how similar a data
point is to the data samples seen during training. This estimate may be the
distance from the decision boundary (the separating hyperplane), or a discrete
class value (+1 for data that is similar and -1 for data that is not). Either type of
score can be used as an anomaly score.

An OCSVM classifier learns a decision boundary around data seen during

training.



Additional Considerations
In practice, applying deep learning relies on a few data and modeling
assumptions. This section explores them in detail.

Anomalies as Rare Events
For the training approaches discussed thus far, we operate on the assumption
of the availability of “normal” labeled data, which is then used to teach a model
recognize normal behavior. In practice, it is often the case that labels do not
exist or can be expensive to obtain. However, it is also a common observation
that anomalies (by definition) are relatively infrequent events and therefore
constitute a small percentage of the entire event dataset (for example, the
occurrence of fraud, machine failure, cyberattacks, etc.). Our experiments (see
Chapter 4. Prototype for more discussion) have shown that the neural network
approaches discussed above remain robust in the presence of a small
percentage of anomalies (less than 10%). This is mainly because introducing a
small fraction of anomalies does not significantly affect the network’s model of

At test time, An OCSVM model classifies data points outside the learned

decision boundary as anomalies (assigned class of -1).



normal behavior. For scenarios where anomalies are known to occur sparingly,
our experiments show that it’s possible to relax the requirement of assembling
a dataset consisting only of labeled normal samples for training.

Discretizing Data and Handling Stationarity
To apply deep learning approaches for anomaly detection (as with any other
task), we need to construct a dataset of training samples. For problem spaces
where data is already discrete, we can use the data as is (e.g., a dataset of
images of wall panels, where the task is to find images containing abnormal
panels). When data exists as a time series, we can construct our dataset by
discretizing the series into training samples. Typically this involves slicing the
data into chunks with comparable statistical properties. For example, given a
series of recordings generated by a data center temperature sensor, we can
discretize the data into daily or weekly time slices and construct a dataset
based on these chunks. This becomes our basis for anomaly comparison (e.g.,
the temperature pattern for today is anomalous compared to patterns for the
last 20 days). The choice of the discretization approach (daily, weekly, averages,
etc.) will often require some domain expertise; the one requirement is that
each discrete sample be comparable. For example, given that temperatures may
spike during work hours compared to non-work hours in the scenario we’re
considering, it may be challenging to discretize this data by hour as different
hours exhibit different statistical properties.



This notion of constructing a dataset of comparable samples is related to the
idea of stationarity. A stationary series is one in which properties of the data
(mean, variance) do not vary with time. Examples of non-stationary data include
data containing trends (e.g., rising global temperatures) or with seasonality (e.g.,
hourly temperatures within each day). These variations need to be handled
during discretization. We can remove trends by applying a differencing function
to the entire dataset. To handle seasonality, we can explicitly include
information on seasonality as a feature of each discrete sample; for instance, to
discretize by hour, we can attach a categorical variable representing the hour of
the day. A common misconception regarding the application of neural networks
capable of modeling temporal relationships such as LSTMs is that they
automatically learn/model properties of the data useful for predictions
(including trends and seasonality). However, the extent to which this is possible
is dependent on how much of this behavior is represented in each training
sample. For example, to automatically account for trends or patterns across the
day, we can discretize data by hour with an additional categorical feature for
hour of day, or discretize by day (24 features for each hour).

Temperature readings for a data center over several days can be

discretized (sliced) into daily 24-hour readings and labeled (0 for a

normal average daily temperature, 1 for an abnormal temperature) to

construct a dataset.



Note: For most machine learning algorithms, it is a requirement that samples be
independent and identically distributed. Ensuring we construct comparable
samples (i.e., handle trends and seasonality) from time series data allows us to
satisfy the latter requirement, but not the former. This can affect model
performance. In addition, constructing a dataset in this way raises the
possibility that the learned model may perform poorly in predicting output
values that lie outside the distribution (range of values) seen during training;
i.e., if there is a distribution shift. This greatly amplifies the need to retrain the
model as new data arrives, and complicates the model deployment process. In
general, discretization should be applied with care.

Selecting a Model
There are several factors that can influence the primary approach taken when it
comes to detecting anomalies. These include the data properties (time series
vs. non-time series, stationary vs. non-stationary, univariate vs. multivariate,
low-dimensional vs. high-dimensional), latency requirements, uncertainty
reporting, and accuracy requirements. More importantly, deep learning methods
are not always the best approach! To provide a framework for navigating this
space, we offer the following recommendations:

Data Properties

Time series data: As discussed in the previous section, it is important to
correctly discretize the data and to handle stationarity before training a
model. In addition, for discretized data with temporal relationships, the use
of LSTM layers as part of the encoder or decoder can help model these
relationships.

Univariate vs Multivariate: Deep learning methods are well suited to data
that has a wide range of features: they’re recommended for high-
dimensional data, such as images, and work well for modeling the
interactions between multiple variables. For most univariate datasets, linear
models (see Chandola et al.) are both fast and accurate and thus typically
preferred.

Business Requirements

https://dl.acm.org/doi/10.1145/1541880.1541882


Latency: Deep learning models are slower than linear models. For scenarios
that include high volumes of data and have low latency requirements, linear
models are recommended (e.g., for detecting anomalies in authentication
requests for 200,000 work sites, with each machine generating 500
requests per second).

Accuracy: Deep learning approaches tend to be robust, providing better
accuracy, precision, and recall.

Uncertainty: For scenarios where it is a requirement to provide a principled
estimate of uncertainty for each anomaly classification, deep learning
models such as VAEs and BiGANs are recommended.

How to Decide on a Modeling
Approach?
Given the differences between the deep learning methods discussed above
(and their variants), it can be challenging to decide on the right model. When
data contains sequences with temporal dependencies, a sequence-to-
sequence model (or architectures with LSTM layers) can model these
relationships, yielding better results. For scenarios requiring principled
estimates of uncertainty, generative models such as a VAE and GAN based
approaches are suitable. For scenarios where the data is images, AEs, VAEs and
GANs designed with convolution layers are suitable.



A summary of steps for selecting an approach to anomaly detection.



The following table highlights the pros and cons of the different types of
models, to give you an idea under what kind of scenarios they are
recommended.

Model Pros Cons

AutoEncoder Flexible approach to modeling complex non-
linear patterns in data

Does not support variational inference
(estimates of uncertainty)

Requires a large dataset for training

Variational
AutoEncoder

Supports variational inference (probabilistic
measure of uncertainty)

Requires a large amount of training data,
training can take a while

GAN
(BiGAN)

Supports variational inference (probabilistic
measure of uncertainty)

Use of discriminator signal allows better learning

of data manifold[7] (useful for high dimensional
image data).

GANs trained in semi-supervised learning mode
have shown great promise, even with very few

labeled data[8]

Requires a large amount of training data, and
longer training time (epochs) to arrive at stable

results[9]

Training can be unstable (GAN mode
collapse)

Sequence-
to-Sequence
Model

Well suited for data with temporal components
(e.g., discretized time series data)

Slow inference (compute scales with
sequence length which needs to be fixed)

Training can be slow
Limited accuracy when data contains features

with no temporal dependence
Supports variational inference (probabilistic

measure of uncertainty)

One Class
SVM

Does not require a large amount of data
Fast to train
Fast inference time

Limited capacity in capturing complex
relationships within data

Requires careful parameter selection (kernel,
nu, gamma) that need to be carefully tuned.

Does not model a probability distribution,
harder to compute estimates of confidence.



In this section, we provide an overview of the data and experiments used to
evaluate each of the approaches mentioned in Chapter 3. Deep Learning for
Anomaly Detection. We also introduce two prototypes we built to demonstrate
results from the experiments and how we designed each prototype.

Datasets
KDD
The KDD network intrusion dataset is a dataset of TCP connections that have
been labeled as normal or representative of network attacks.

“A connection is a sequence of TCP packets starting and ending at some
well-defined times, between which data flows to and from a source IP
address to a target IP address under some well-defined protocol.”

These attacks fall into four main categories - denial of service, unauthorized
access from a remote machine, unauthorized access to local superuser
privileges, and surveillance, e.g., port scanning. Each TCP connection is
represented as a set of attributes or features (derived based on domain
knowledge) pertaining to each connection such as the number of failed logins,
connection duration, data bytes from source to destination, etc. The dataset is
comprised of a training set (97278 normal traffic samples, 396743 attack traffic
samples) and a test set (63458 normal packet samples, 185366 attack traffic
samples). To make the data more realistic, the test portion of the dataset
contains 14 additional attack types that are not in the train portion; thus, a good
model should generalize well and detect attacks unseen during training.

ECG5000
The ECG5000 dataset contains examples of ECG signals from a patient. Each
data sample, which corresponds to an extracted heartbeat containing 140

Prototype
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http://www.timeseriesclassification.com/description.php?Dataset=ECG5000


points, has been labeled as normal or being indicative of heart conditions
related to congestive heart failure. Given an ECG signal sample, the task is to
predict if it is normal or abnormal. ECG5000 is well-suited to a prototype for a
few reasons: it is visual (signals can be visualized easily) and it is based on real
data associated with a concrete use case (heart disease detection). While the
task itself is not extremely complex, the data is multivariate (140 values per
sample, which allows us to demonstrate the value of a deep model), but small
enough to rapidly train and run inference.

Benchmarking Models
We sought to compare each of the models discussed earlier using the KDD
dataset. We preprocessed the data to keep only 18 continuous features (Note:
this slightly simplifies the problem and results in differences from similar
benchmarks on the same dataset). Feature scaling (0-1 minmax scaling) is also
applied to the data; scaling parameters are learned from training data and then
applied to test data. We then trained each model using normal samples (97,278
samples) and evaluated it on a random subset of the test data (8000 normal
samples and 2000 normal samples).

Method Encoder Decoder Other Parameters

PCA NA NA 2 Component PCA

OCSVM NA NA Kernel: Rbf, Outlier fraction: 0.01;
gamma: 0.5. 
Anomaly score as distance from
decision boundary.

Autoencoder 2 hidden layers
[15, 7]

2 hidden layers [15, 7] Latent dimension: 2Batch size:
256Loss: Mean squared error

Variational
Autoencoder

2 hidden layers
[15, 7]

2 hidden layers [15, 7] Latent dimension: 2 
Batch size: 256 
Loss: Mean squared error + KL
divergence

Sequence to
Sequence Model

1 hidden layer,
[10]

1 hidden layer [20] Bidirectional LSTMs 
Batch size: 256 
Loss: Mean squared error

Bidirectional
GAN

Encoder: 2 hidden
layers [15, 7], 
Generator: 2
hidden layers [15,
7]

Generator: 2 hidden layers [15, 7]
Discriminator: 2 hidden layers [15, 7]

Latent dimension: 32 
Loss: Binary Cross Entropy 
Learning rate: 0.1

We implemented each model using comparable parameters (see the table
above) that allow us to benchmark them in terms of training and inference (total
training time to best accuracy, inference time), storage (size of weights, number



of parameters), and performance (accuracy, precision, recall). The deep learning
models (AE, VAE, Seq2seq, BiGAN) were implemented in Tensorflow (keras
api); each model was trained till best accuracy measured on the same validation
dataset, using the Adam optimizer, batch size of 256 and a learning rate of 0.01.
OCSVM was implemented using the Sklearn OCSVM library using the non-linear
rbf kernel and parameters (nu=0.01 and gamma=0.5). Results from PCA (using
the the sum of the projected distance of a sample on all eigenvectors as the
anomaly score) are also included. Additional details on the parameters for each
model are summarized in the table below for reproducibility. These experiments
were run on an Intel® Xeon® CPU @ 2.30GHz and a NVIDIA T4 GPU (applicable
to the deep models).

Training, Inference, Storage

Method Model Size (KB) Inference Time (Seconds) # of Parameters Total Training Time (Seconds)

BiGAN 47.945 1.26 714 111.726

Autoencoder 22.008 0.279 842 32.751

OCSVM 10.77 0.029 NA 0.417

VAE 23.797 0.391 858 27.922

Seq2Seq 33.109 400.131 2741 645.448

PCA 1.233 0.003 NA 0.213

Each model is compared in terms of inference time on the entire test dataset,
total training time to peak accuracy, number of parameters (deep models), and
model size.

As expected, a linear model like PCA is both fast to train and fast for inference.
This is followed by OCSVM, autoencoders, variational autoencoders, BiGAN, and
sequence-to-sequence models in order of increasing model complexity. The

Comparison of anomaly detection models in terms of model size, inference

time and training time.

https://keras.io/optimizers/
https://scikit-learn.org/stable/modules/generated/sklearn.svm.OneClassSVM.html


GAN-based model required the most training epochs to achieve stable results;
this is in part due to a known stability issue associated with GANs. The
sequence-to-sequence model is particularly slow for inference given the
sequential nature of the decoder.

For each of the deep models, we store the network weights to disk and
compute the size of weights. For OCSVM and PCA, we serialize the model to
disk using pickle and compute the size of each model file. These values are
helpful in estimating memory and storage costs when deploying these models
in production.

Performance

Method ROC AUC Accuracy Precision Recall F1 score F2 Score

BiGAN 0.972 0.962 0.857 0.973 0.911 0.947

Autoencoder 0.963 0.964 0.867 0.968 0.914 0.945

OCSVM 0.957 0.949 0.906 0.83 0.866 0.844

VAE 0.946 0.93 0.819 0.836 0.827 0.832

Seq2Seq 0.919 0.829 0.68 0.271 0.388 0.308

PCA 0.771 0.936 0.977 0.699 0.815 0.741

https://arxiv.org/abs/1606.03498
https://docs.python.org/3/library/pickle.html


For each model, we use labeled test data to first select a threshold that yields
the best accuracy and then report on metrics such as f1, f2, precision, and recall
at that threshold. We also report on ROC (area under the curve) to evaluate the
overall skill of each model. Given that the dataset we use is not extremely
complex (18 features), we see that most models perform relatively well. Deep
models (BiGAN, AE) are more robust (precision, recall, ROC AUC), compared to
PCA and OCSVM. The sequence-to-sequence model is not particularly

Histogram for the distribution of anomaly scores assigned to the test

data for each model. The red vertical line represents a threshold value

that yields the best accuracy.



competitive, given the data is not temporal. On a more complex dataset (e.g.,
images), we expect to see (similar to existing research), more pronounced
advantages in using a deep learning model.

Web Application Prototypes
We built two prototypes that demonstrate results and insights from our
experiments. The first prototype, Blip, is built on on the KDD dataset used in
the experiments above and is a visualization of the performance of four
approaches to anomaly detection. The second prototype, Anomagram, is an
interactive explainer that focuses on the autoencoder model, and the results
from applying it to detecting anomalies in ECG data.

Blip

Blip plays back and visualizes the performance of four different algorithms on a
subset of the KDD network intrusion dataset. Blip dramatizes the analogy
detection process and builds user intution about the trade-offs involved.

The Blip prototype.

https://arxiv.org/abs/1605.07717
https://blip.fastforwardlabs.com/
http://anomagram.fastforwardlabs.com/#/
https://blip.fastforwardlabs.com/


The concept of an anomaly is easy to visualize: something that doesn’t look the
same. The conceptual simplicity of it actually makes the prototype’s job tricker.
If we show you a dataset where the anomalies are easy to spot, it’s not clear
what you need an algorithm for. Instead, we want to place you in a situation
where the data is complicated enough, and streaming in fast enough, that the
benefits of an algorithm are clear. Often in a data visualization, you want to
remove complexity; in Blip, we wanted to preserve it, but place it in context. We
did this by including at the top a terminal-like view of the connection data
coming in. The speed and number of features involved make the usefulness of
an algorithm, which can operate at a higher speed and scale than a human, clear.

Directly below the terminal-like streaming data, we show performance metrics
for each of the algorithms. These metrics include accuracy, recall, and precision.
The three different measurements hint at the trade-offs involved in choosing an
anomaly detection algorithm. You will want to prioritize different metrics
depending on the situation. Accuracy is a measure of how often the algorithm is
right. Prioritizing precision will minimize false positives, while focusing on recall
will minimize false negatives. By showing the formulas for each of these
metrics, updated in real-time with the streaming data, we build intuition about
how the different measures interact.

The terminal section shows the data streaming in.

The strategy section shows the performance of the algorithms across

different metrics.



In the visualizations, we want to give the user a feel for how each algorithm
performs across the various metrics. If a connection is classified by the
algorithm as an anomaly, it is stacked on the left; if it is classified as normal, it is
placed on the right. The ground truth is indicated by the color: red for anomaly,
black for normal. In a perfectly performing algorithm, the left side would be
completely red and the right completely black. An algorithm that has lots of false
negatives (low recall) will have a higher density of red mixed in with the black on
the right side. A low precision performance will show up as lots of black mixed
into the left side. The fact that each connection gets its own spot makes the
scale of the dataset clear (versus the streaming-terminal view where old
connections quickly leave the screen). Our ability to quickly assess visual
density makes it easier to get a feel for what differences in performance metrics
across algorithms really mean.

One difficulty in designing the prototype was figuring out when to reveal the
ground truth (visualized as the red or black color). In a real-world situation, you
would not know the truth as it came in (you woudn’t need an algorithm then).
Early versions of the prototype experimented with only revealing the color after
classification. Ultimately, we decided that because there is already a lot
happening in the prototype, a delayed reveal pushed the complexity a step too
far. Part of this is because the prototype shows the performance of four
different algorithms. If we were showing only one, we’d have more room to
animate the truth reveal. We decided to reveal the color truth at the start to

The last section visualizes the performance of each algorithm.



strengthen the visual connection between the connection data as shown in the
terminal and in each of the algorithm visualizations.

Prototype II - Anomagram
This section describes Anomagram - an interactive web based experience
where the user can build, train and evaluate an autoencoder to detect
anomalous ECG signals. It utilizes the ECG5000 dataset mentioned above.

UX Goals for Anomagram

Anomagram is designed as part of a growing area of interactive visualizations
(see Neural Network Playground, ConvNet Playground, GANLab, GAN dissection,
etc.) that help communicate technical insights on how deep learning models
work. It is entirely browser-based and implemented in Tensorflow.js. This way,
users can explore live experiments with no installations required. Importantly,
Anomagram moves beyond the use of toy/synthetic data and situates learning
within the context of a concrete task (anomaly detection for ECG data). The
overall user experience goals for Anomagram are summarized as follows:

1: Provide an introduction to autoencoders and how they can be applied to the
task of anomaly detection. This is achieved via the Introduction module (see
screenshot below). This entails providing definitions of concepts
(reconstruction error, thresholds, etc.) paired with interactive visualizations that
demonstrate concepts (e.g., an interactive visualization for inference on test
data, a visualization of the structure of an autoencoder, a visualization of error
histograms as training progresses, etc.).

http://anomagram.fastforwardlabs.com/#/
https://playground.tensorflow.org/
http://convnetplayground.fastforwardlabs.com/
https://poloclub.github.io/ganlab/
https://gandissect.csail.mit.edu/


2: Provide an interactive, accessible experience that supports technical learning
by doing. This is mostly accomplished within the Train a Model module (see
screenshot below) and is designed for users interested in additional technical
depth. It entails providing a direct manipulation interface that allows the user to
specify a model (add/remove layers and units within layers), modify model
parameters (training steps, batchsize, learning rate, regularizer, optimizer),
modify training/test data parameters (data size, data composition), train the
model, and evaluate model performance (visualization of accuracy, precision,
recall, false positive, false negative, ROC, etc. metrics) as each parameter is
changed. Who should use Anomagram? Anyone interested to learn about
autoencoders and anomaly detection in an accessible way. Anomagram is also
useful for educators (as a tool to support guided discussion of the topic), entry
level data scientists, and non-ML experts (citizen data scientists, software
developers, designers).

Introduction module view.



Interface Affordances and Insights

This section discusses some explorations the user can perform with
Anomagram, and some corresponding insights.

Craft (Adversarial) Input: Anomalies by definition can take many different and
previously unseen forms. This makes the assessment of anomaly detection
models more challenging. Ideally, we want the user to conduct their own
evaluations of a trained model, e.g., by allowing them to upload their own ECG
data. In practice, this requires the collection of digitized ECG data with similar
preprocessing (heartbeat extraction) and range as the ECG5000 dataset used in
training the model. This is challenging. The next best way to allow testing on
examples contributed by the user is to provide a simulator — hence the draw
your ECG data feature. This provides an (html) canvas on which the user can
draw signals and observe the model’s behaviour. Drawing strokes are converted
to an array, with interpolation for incomplete drawings (total array size=140) and
fed to the model. While this approach has limited realism (users may not have

Train a Model module view.



sufficient domain expertise to draw meaningful signals), it provides an
opportunity to craft various types of (adversarial) samples and observe the
model’s performance.

Insights: The model tends to expect reconstructions that are close to the mean
of normal data samples. Using the Draw your ECG data feature, the user can
draw (adversarial) examples of input data and observe model
predictions/performance.

Visually Compose a Model: Users can intuitively specify an autoencoder
architecture using a direct manipulation model composer. They can add layers
and add units to layers using clicks. The architecture is then used to specify the
model’s parameters each time the model is compiled. This follows a similar
approach used in “A Neural Network Playground”[3]. The model composer
connector lines are implemented using the leaderline library. Relevant lines are
redrawn or added as layers are added or removed from the model.

Insights: There is no marked difference between a smaller model (1 layer) and a
larger model (e.g., 8 layers) for the current task. This is likely because the task is
not especially complex (a visualization of PCA points for the ECG dataset
suggests it is linearly separable). Users can visually compose the autoencoder
model — add remove layers in the encoder and decoder. To keep the encoder
and decoder symmetrical, add/remove operations on either are mirrored.

Effect of Learning Rate, Batchsize, Optimizer, Regularization: The user can
select from 6 optimizers (Adam, Adamax, Adadelta, Rmsprop, Momentum, Sgd),
various learning rates, and regularizers (l1, l2, l1l2).

Insights: Adam reaches peak accuracy with less steps compared to other
optimizers. Training time increases with no benefit to accuracy as batchsize is
reduced (when using Adam). A two layer model will quickly overfit on the data;
adding regularization helps address this to some extent.

Effect of Threshold Choices on Precision/Recall: Earlier in this report (see
Chapter 2. Evaluating Models: Accuracy Is Not Enough ) we highlight the
importance of metrics such as precision and recall and why accuracy is not
enough. To support this discussion, the user can visualize how threshold
choices impact each of these metrics.

Insights: As threshold changes, accuracy can stay the same but, precision and
recall can vary. This further illustrates how the threshold can be used by an



analyst as a lever to reflect their precision/recall preferences.

Effect of Data Composition: We may not always have labeled normal data to
train a model. However, given the rarity of anomalies (and domain expertise), we
can assume that unlabeled data is mostly comprised of normal samples.
However, this assumption raises an important question - does model
performance degrade with changes in the percentage of abnormal samples in
the dataset? In the Train a Model section, you can specify the percentage of
abnormal samples to include when training the autoencoder model.

Insights: We see that with 0% abnormal data, the model AUC is ~96%. Great! At
30% abnormal sample composition, AUC drops to ~93%. At 50% abnormal data
points, there is just not enough information in the data that allows the model to
learn a pattern of normal behaviour. It essentially learns to reconstruct normal
and abnormal data well and mse is no longer a good measure of anomaly. At this
point, model performance is only slightly above random chance (AUC of 56%).



This chapter provides an overview of the landscape of currently available open
source tools and service vendor offerings available for anomaly detection, and
considers the trade-offs as well as when to use each.

Open Source Tools and
Frameworks
Several popular open source machine learning libraries and packages in Python
and R include implementations of algorithmic techniques that can be applied to
anomaly detection tasks. Useful algorithms (e.g., clustering, OCSVMs, isolation
forests) also exist as part of general-purpose frameworks like scikit-learn
that do not cater specifically to anomaly detection. In addition, generic
packages for univariate time series forecasting (e.g., Facebook’s Prophet) have
been applied widely to anomaly detection tasks where anomalies are identified
based on the difference between the true value and a forecast.

In this section, our focus is on comprehensive toolboxes that specifically
address the task of anomaly detection.

Python Outlier Detection (PyOD)
PyOD is an open source Python toolbox for performing scalable outlier
detection on multivariate data. It provides access to a wide range of outlier
detection algorithms, including established outlier ensembles and more recent
neural network-based approaches, under a single, well-documented API.

PyOD offers several distinct advantages:

It gives access to over 20 algorithms, ranging from classical techniques such
as local outlier factor (LOF) to recent neural network architectures such as
autoencoders and adversarial models.

Landscape
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It implements combination methods for merging the results of multiple
detectors and outlier ensembles, which are an emerging set of models.
It includes a unified API, detailed documentation, and interactive examples
across all algorithms for clarity and ease of use.
All models are covered by unit testing with cross-platform continuous
integration, code coverage, and code maintainability checks.
Optimization instruments are employed when possible: just-in-time (JIT)
compilation and parallelization are enabled in select models for scalable
outlier detection.
It’s compatible with both Python 2 and 3 across major operating systems.

Seldon’s Anomaly Detection Package
Seldon.io is known for its open source ML deployment solution for Kubernetes,
which can in principle be used to serve arbitrary models. In addition, the Seldon
team has recently released alibi-detect, a Python package focused on
outlier, adversarial, and concept drift detection. The package aims to provide
both online and offline detectors for tabular data, text, images, and time series
data. The outlier detection methods should allow the user to identify global,
contextual, and collective outliers.

Seldon has identified anomaly detection as a sufficiently important capability to
warrant dedicated attention in the framework, and has implemented several
models to use out of the box. The existing models include sequence-to-
sequence LSTMs, variational autoencoders, spectral residual models for time
series, Gaussian mixture models, isolation forests, Mahalanobis distance, and
others. Examples and documentation are provided.

In the Seldon Core architecture, anomaly detection methods may be
implemented as either models or input transformers. In the latter case, they can
be composed with other data transformations to process inputs to another
model. This nicely illustrates one role anomaly detection can play in ML
systems: flagging bad inputs before they pass through the rest of a pipeline.

R Packages
The following section reviews R packages that have been created for anomaly
detection. Interestingly, most of them deal with time series data.

https://github.com/SeldonIO
https://github.com/SeldonIO/alibi-detect


Twitter’s AnomalyDetection package

Twitter’s AnomalyDetection is an open source R package that can be used to
automatically detect anomalies. It is applicable across a wide variety of contexts
(for example, anomaly detection in system metrics after a new software release,
user engagement after an A/B test, or problems in econometrics, financial
engineering, or the political and social sciences). It can help detect both global
and local anomalies as well as positive/negative anomalies (i.e., a point-in-time
increase/decrease in values).

The primary algorithm, Seasonal Hybrid Extreme Studentized Deviate (S-H-ESD),
builds upon the Generalized ESD test for detecting anomalies, which can be
either global or local. This is achieved by employing time series decomposition
and using robust statistical metrics; i.e., median together with ESD. In addition,
for long time series (say, 6 months of minutely data), the algorithm employs
piecewise approximation.

The package can also be used to detect anomalies in a vector of numerical
values when the corresponding timestamps are not available, and it provides
rich visualization support. The user can specify the direction of anomalies and
the window of interest (such as the last day or last hour) and enable or disable
piecewise approximation, and the x- and y-axes are annotated to assist visual
data analysis.

anomalize package

The anomalize package, open sourced by Business Science, performs time
series anomaly detection that goes inline with other Tidyverse packages (or
packages supporting tidy data).

Anomalize has three main functions:

Decompose separates out the time series into seasonal, trend, and
remainder components.
Anomalize applies anomaly detection methods to the remainder
component.
Recompose calculates upper and lower limits that separate the “normal”
data from the anomalies.

tsoutliers package

https://github.com/twitter/AnomalyDetection
https://github.com/business-science/anomalize
https://www.tidyverse.org/


This package implements a procedure based on the approach described in
Chen and Liu (1993) for automatic detection of outliers in time series. Time
series data often undergoes nonsystematic changes that alter the dynamics of
the data, either transitorily or permanently. The approach considers innovational
outliers, additive outliers, level shifts, temporary changes, and seasonal level
shifts while fitting a time series model.

Numenta’s HTM (Hierarchical Temporal
Memory)
Research organization Numenta has introduced a machine intelligence
framework for anomaly detection called Hierarchical Temporal Memory (HTM). At
the core of HTM are time-based learning algorithms that store and recall
temporal patterns. Unlike most other ML methods, HTM algorithms learn time-
based patterns in unlabeled data on a continuous basis. They are robust to
noise and high-capacity, meaning they can learn multiple patterns
simultaneously. The HTM algorithms are documented and available through the
open source Numenta Platform for Intelligent Computing (NuPIC). They’re
particularly suited to problems involving streaming data and to identifying
underlying patterns in data change over time, subtle patterns, and time-based
patterns.

One of the first commercial applications to be developed using NuPIC is Grok, a
tool that performs IT analytics, giving insight into IT systems to identify unusual
behavior and reduce business downtime. Another is Cortical.io, which enables
applications in natural language processing.

The NuPIC platform also offers several tools, such as HTM Studio and Numenta
Anomaly Benchmark (NAB). HTM Studio is a free desktop tool that enables
developers to find anomalies in time series data without the need to program,
code, or set parameters. NAB is a novel benchmark for evaluating and
comparing algorithms for anomaly detection in streaming, real-time applications.
It is composed of over 50 labeled real-world and artificial time series data files,
plus a novel scoring mechanism designed for real-time applications.

Besides this, there are example applications available on NuPIC that include
sample code and whitepapers for tracking anomalies in the stock market, rogue
behavior detection (finding anomalies in human behavior), and geospatial
tracking (finding anomalies in objects moving through space and time).

https://www.rdocumentation.org/packages/tsoutliers/versions/0.6-8
https://www.researchgate.net/publication/243768707_Joint_Estimation_of_Model_Parameters_and_Outlier_Effects_in_Time_Series
https://numenta.com/
https://grokstream.com/
https://www.cortical.io/


Numenta is a technology provider and does not create go-to-market solutions
for specific use cases. The company licenses its technology and application
code to developers, organizations, and companies that wish to build upon it.
Open source, trial, and commercial licenses are available. Developers can use
Numenta technology within NuPIC via the AGPL v3 open source license.

Anomaly Detection as a Service
In this section, we survey a sample of the anomaly detection services available
at the time of writing. Most of these services can access data from public cloud
databases, provide some kind of dashboard/report format to view and analyze
data, have an alert mechanism to indicate when an anomaly occurs, and enable
developers to view underlying causes. An anomaly detection solution should try
to reduce the time to detect and speed up the time to resolution by identifying
key performance indicators (KPIs) and attributes that are causing the alert. We
compare the offerings across a range of criteria, from capabilities to delivery.

Anodot
Capabilities
Anodot is a real-time analytics and automated anomaly detection system
that detects outliers in time series data and turns them into business
insights. It explores anomaly detection from the perspective of forecasting,
where anomalies are identified based on deviations from expected
forecasts. The product has a dual focus: business monitoring (SaaS
monitoring, anomaly detection, and root cause analysis) and business
forecasting (trend prediction, “what ifs,” and optimization).

Data requirements
Anodot supports multiple input data sources, including direct uploads and
integrations with Amazon’s S3 or Google Cloud storage. It’s data-agnostic
and can track a variety of metrics: revenue, number of sales, number of
page visits, number of daily active users, and others.

Modeling approach/technique(s)
Anodot analyzes business metrics in real time and at scale by running its ML
algorithms on the live data stream itself, without reading or writing into a
database. Every data point that flows into Anodot from all data sources is
correlated with the relevant metric’s existing normal model, and either is

https://www.anodot.com/


flagged as an anomaly or serves to update the normal model. Anodot’s
philosophy is that no single model can be used to cover all metrics. To
allocate the optimal model for each metric, they’ve created a library of
model types for different signal types (metrics that are stationary or non-
stationary, multimodal or discrete, irregularly sampled, sparse, stepwise,
etc.). Each new metric goes through a classification phase and is matched
with the optimal model. The model then learns “normal behavior” for that
metric, which is a prerequisite to identifying anomalous behavior. To
accommodate this kind of learning in real time at scale, Anodot uses
sequential adaptive learning algorithms which initialize a model of what is
normal on the fly, and then compute the relation of each new data point
going forward.

Point anomalies or intervals
Instead of flagging individual data points as anomalies, Anodot highlights
intervals. Points within the entire duration of the interval are considered
anomalous, preventing redundant alerts.

Thresholding
While users can specify static thresholds which trigger alerts, Anodot also
provides automatic defaults where no thresholding input from the user is
required.

Root cause investigation
Anodot helps users investigate why an alert was triggered. It tries to
understand how different active anomalies correlate in order to expedite
root cause investigation and shorten the time to resolution, grouping
together different anomalies (or “incidents”) that tell the story of the
phenomena. These might be multiple anomalous values in the same
dimension (e.g., a drop in traffic from sources A and B, but not C, D, or E), or
correlations between different anomalous KPIs, such as visits, conversions,
orders, revenue, or error rate. Each incident has an Anomap, a graphic
distribution of the dimensions most impacted. This is essentially a heat map
that makes it easier to understand the whole picture.

User interface
The Anodot interface enables users to visualize and explore alerts. With the
receipt of each alert, the user is prompted to assign it a binary score (good
catch/bad catch). This input is fed back into the learning model to further
tune it by providing real-life indications about the validity of its



performance. By training the algorithms with direct feedback on anomalies,
users can influence the system’s functionality and results.

Delivery
Notifications can be forwarded to each user through their choice of
channel(s). Anodot notification integrations include an API, Slack, email,
PagerDuty, Jira, Microsoft Teams OpsGenie, and more.

Amazon QuickSight
Capabilities
Amazon QuickSight is a cloud-native business intelligence (BI) service that
allows its users to create dashboards and visualizations to communicate
business insights. In early 2019, Amazon’s machine learning capability was
integrated with QuickSight to provide anomaly detection, forecasting, and
auto-narrative capabilities as part of the BI tool. Its licensed software and
pricing is usage-based; you only pay for active usage, regardless of the
number of users. That said, the pricing model could end up being
expensive, since anomaly detection tasks are compute-intensive.

Data requirements
QuickSight requires you to connect or import structured data directly query
a SQL-compatible source, or ingest the data into SPICE. There is a
requirement on the number of historical data points that must be provided,
which varies based on the task (analyzing anomalies or forecasting). There
are also restrictions on the number of category dimensions that can be
included (for example: product category, region, segment).

Modeling approach/technique(s)
QuickSight provides a point-and-click solution for learning about anomalous
behavior and generating forecasts. It utilizes a built-in version of the
Random Cut Forest (RCF) online algorithm, which not only can be noisy but
also can lead to large amounts of false positive alerts. On the plus side, it
provides a customizable narrative feature that explains key takeaways from
the insights generated. For instance, it can provide a summary of how
revenue compares to a previous period or a 30-day average, and/or
highlight the event in case of an anomaly.

Point anomalies or intervals
Anomalous events are presented discretely, on a point-by-point basis. If an

https://docs.aws.amazon.com/quicksight/latest/user/anomaly-detection-function.html


anomaly lasts more than a single time unit the system will flag several
events, which could be noisy and redundant.

Thresholding
Anomaly detection with QuickSight employs a thresholding approach to
trigger anomalous events. The user provides a threshold value (low,
medium, high, very high) that determines how sensitive the detector is to
anomalies: expect to see more anomalies when the setting is low, and
fewer anomalies when it’s high. The sensitivity is determined based on
standard deviations of the anomaly score generated by the RCF algorithm.
This approach can be tedious, especially when there are multiple time
series being analyzed across various data hierarchy combinations, and
introduces the need for manual intervention.

Root cause investigation
Users can interactively explore anomalies on the QuickSight dashboard or
report to help understand the root causes. The tool performs a contribution
analysis which highlights the factors that significantly contributed to an
anomaly. If there are dimensions in the data that are not being used in the
anomaly detection, it’s possible to add up to four of them for the
contribution analysis task. In addition, QuickSight supports interactive
“what-if” queries. In these, some of the forecasts can be altered and
treated as hypotheticals to provide conditional forecasts.

User interface
QuickSight provides a basic reporting interface. From a UI perspective, it is
fairly unexceptional. For instance, it lacks a way to understand the overall
picture with anomalous points (do the anomalies have some common
contributing factors?). Furthermore, the forecasted values do not have
confidence intervals associated with them, which would help the end user
visually understand the magnitude of an anomaly. As it stands, there is no
basis for comparison.

Delivery
QuickSight dashboards and reports can be embedded within applications,
shared among users, and/or sent via email, as long as the recipients have a
QuickSight subscription.

Outlier.ai



Capabilities
Outlier.ai is licensed software that uses artificial intelligence to automate
the process of business analytics. It can connect to databases provided by
cloud services and automatically provides insights to your inbox, without
the need to create reports or write queries. Outlier works with customers
across industry segments, applying ML to automatically serve up business-
critical insights.

Data requirements
Outlier can connect to databases provided by cloud services.

Point anomalies or intervals
Anomalous events are presented discretely, on a point-by-point basis.

Root cause investigation
Outlier allows customers to not only surface key insights about business
changes automatically, but also identify the likely root causes of those
changes; this feature guides teams in making quick, informed business
decisions. Teams can easily share stories through PDFs, PowerPoint-
optimized images, or auto-generated emails, annotated with their
comments.

User interface
The UI is similar to that provided by most standard BI tools, making it fairly
user-friendly.

Delivery
The generated dashboards can be embedded within applications, shared
among users, and/or sent via email.

Vectra Cognito
Capabilities
In simple terms, Vectra.ai’s flagship platform, Cognito, can be described as
an intrusion detection system. It’s a cloud-based network detection and
response system that performs a number of cybersecurity-related tasks,
including network traffic monitoring and anomaly detection. For this latter
task, metadata collected from captured packets (rather than via deep packet
inspection) is analyzed using a range of behavioral detection algorithms.
This provides insights about outlier characteristics that can be applied in a

https://outlier.ai/
https://www.vectra.ai/


wide range of cybersecurity detection and response use cases. Cognito
works with both encrypted and unencrypted traffic.

Data requirements
Cognito can connect to databases provided by cloud services. It also uses
metadata drawn from Active Directory and DHCP logs.

Modeling approach/technique(s)
According to a whitepaper published by Vectra, a mix of ML approaches are
used to deliver the cybersecurity features the platform supports, in both
global and local (network) contexts. For example, supervised learning
techniques such as random forests can help to address cyberthreats
associated with suspicious HTTP traffic patterns. Drawing on large-scale
analysis of many types of malicious traffic and content as well as domain
expertise, the random forest technique can be used to identify patterns of
command-and-control behavior that don’t exist in benign HTTP traffic.
Cognito also uses unsupervised ML techniques such as k-means clustering
to identify valid credentials that have potentially been stolen from a
compromised host. This type of theft is the basis of cyberattacks such as
pass-the-hash and golden ticket. Elsewhere, deep learning has proven
effective in detecting suspicious domain activity; specifically, the detection
of algorithmically generated domains that are set up by cyberattackers as
the frontend of their command-and-control infrastructure.

Point anomalies or intervals
Anomalous events are presented discretely, on a point-by-point basis.

Thresholding
The scoring of compromised hosts by the Vectra Threat Certainty Index
allows security teams to define threshold levels based on a combination of
factors.

Root cause investigation
All detection events are correlated to specific hosts that show signs of
threat behaviors. In turn, all context is assimilated into an up-to-the-
moment score of the overall risk to the organization.

User interface
Vectra’s Cognito platform delivers detection information via a simple
dashboard which displays information such as a prioritized (in terms of risk)

https://content.vectra.ai/rs/748-MCE-447/images/WhitePaper_2019_The_data_science_behind_Cognito_AI_threat_detection_models_English.pdf?mkt_tok=eyJpIjoiWkRGaVpHVmtaVGxrTkdFeiIsInQiOiJ2RVhkK3M0cHU3dXNQRDZ2YnA3QW16K0ZKVFVEK1lDeFRwcTZPMGxXZlB0clhOYmhPaVBXenkzRmY1Ylwvakp5d2FcL1dSakVKbDZhcHZtNEdZU1A3aHFMYkpxVlZHWXllXC9xUGRPOXNtZ0NyTFRjTitxUlVkaXBzNFdiQlBaUUxwVSJ9


list of compromised hosts, changes in a host’s threat and certainty scores,
and “key assets” that show signs of attack.

Delivery
The platform supports information sharing by security teams on demand, or
on a set schedule managed by its customizable reporting engine. Real-time
notifications about network hosts, with attack indicators that have been
identified (with the highest degree of certainty) as posing the biggest risk,
are also supported.

Yahoo’s Anomaly Detector: Sherlock
Capabilities
Sherlock is an open source anomaly detection service built on top of Druid
(an open source, distributed data store). It leverages the Extensible Generic
Anomaly Detection System (EGADS) Java library to detect anomalies in time
series data. Sherlock is fast and scalable. It allows users to schedule jobs
on an hourly, daily, weekly, or monthly basis (although it also supports ad
hoc real-time anomaly detection requests). Anomaly reports can be viewed
from Sherlock’s interface, or received via email.

Data requirements
Sherlock accesses time series data via Druid JSON queries and uses a Redis
backend to store job metadata, the anomaly reports (and other information)
it generates, as well as a persistent job queue. The anomaly reports can be
accessed via direct requests using the Sherlock client API or delivered via
scheduled email alerts.

Modeling approach/technique(s)
Sherlock takes a time series modeling-based approach to anomaly
detection using three important modules from the EGADS library: Time
Series Modeling, Anomaly Detection, and Alerting. The Time Series
Modeling module supports the use of historical data to learn trends and
seasonality in the data using models such as ARIMA. The resulting values
are applied to the models that comprise the Anomaly Detection module.
These models support a number of detection scenarios that are relevant in
a cybersecurity context (e.g., outlier detection and change point detection).
The Alerting module uses the error metric produced by the anomaly
detection models and outputs candidate anomalies based on dynamically
learned thresholds, learning to filter out irrelevant anomalies over time.

https://github.com/yahoo/sherlock
http://druid.io/
https://github.com/yahoo/egads


Point anomalies or intervals
Anomalous events are presented both discretely, on a point-by-point basis,
and as intervals.

Threshold
Thresholds are learned dynamically. No thresholding input from the user is
required/supported.

Root cause analysis
Out of the box root cause analysis is not supported.

User interface
Sherlock’s user interface is built with Spark Java, a UI framework for building
web applications. The UI enables users to submit instant anomaly analyses,
create and launch detection jobs, and view anomalies on both a heat map
and a graph.

Delivery
Scheduled anomaly requests are delivered via email or directly via API-
based queries.

http://sparkjava.com/


Machine learning models that learn to solve tasks independently from data are
susceptible to biases and other issues that may raise ethical concerns. Anomaly
detection models are associated with specific risks and mitigation tactics. In
anomaly detection, when the definition of “normal” is independently learned
and applied without controls, it may inadvertently reflect societal biases that
can lead to harm. This presents risks to human welfare in scenarios where
anomaly detection applications intersect with human behavior. It should go
without saying that in relation to humans, one must resist the assumption that
different is bad.

Diversity Matters

Ethics
CHAPTER 6

Different is not necessarily bad.



Although anomalies are often scrutinized, their absence in the data may be
even more problematic. Consider a model that is trained on X-ray images of
normal luggage contents, but where the training data includes only images of
luggage packed by citizens of North America. This could lead to unusually high
stop and search rates for users from other parts of the world, where the items
packed might differ greatly.

To limit the potential harm of a machine learning model’s tendency to assume
that “different is bad,” one can use a larger (or more varied) dataset and have a
human review the model’s output (both measures reduce the likelihood of
errors). In the luggage example, this translates to using more varied X-ray image
data to expand the machine’s view of what is normal, and using human review to
ensure that positive predictions aren’t false positives.

Explainability
In many anomaly detection applications, the system presents anomalous
instances to the end user, who provides a verdict (label) that can then be fed
back to the model to refine it further. Unfortunately, some applications may not
provide enough explanation about why an instance was considered anomalous,
leaving the end user with no particular guidance on where to begin
investigation. Blindly relying on such applications may cause or, in certain cases,
exacerbate bias.

Additional Use Cases
Ethical considerations are important in every use of machine learning,
particularly when the use case affects humans. In this section, we consider a
few use cases that highlight ethical concerns with regard to anomaly detection.

Data Privacy
Protecting individuals’ data has been a growing concern in the last few years,
culminating in recent data privacy laws like the EU’s General Data Protection
Regulation (GDPR) and the California Consumer Privacy Act (CCPA). These laws
don’t just penalize data breaches, but also guide and limit how an individual’s
personal data can be used and processed. Thus, when anomaly detection
methods are used on protected data, privacy is a top concern.



To give an example, in Chapter 3. Deep Learning for Anomaly Detection we
discussed the autoencoder, a type of neural network that has been widely used
for anomaly detection. As we saw, autoencoders have two parts: an encoder
network that reduces the dimensions of the input data, and a decoder network
that aims to reconstruct the input. Their learning goal is to minimize the
reconstruction error, which is consequently the loss function. Because the
dimensionality reduction brings information loss, and the learning goal
encourages preservation of the information that is common to most training
samples, anomalies that contain rare information can be identified by measuring
model loss.

In certain use cases, these identified anomalies could correspond to
individuals. Improper disclosure of such data can have adverse consequences
for a data subject’s privacy, or even lead to civil liability or bodily harm. One way

to minimize these effects is to use a technique called differential privacy[10] on
the data before it is fed into an anomaly detection system. This technique
essentially adds a small amount of noise to the data, in order to mask individual
identities while maintaining the accuracy of aggregated statistics. When coupled
with an anomaly detection system, differential privacy has been shown to

reduce the rate of false positives,[11] thus protecting the privacy of more
individuals who might otherwise have been singled out and scrutinized.

Health Care Diagnostics
Anomaly detection can be applied in health care scenarios to provide quick and
early warnings for medical conditions. For example, a model can surface chest
X-rays that substantially differ from normal chest X-rays, or highlight images of
tissue samples that contain abnormalities. These analyses can have
tremendous consequences for the patient: in addition to the positive
outcomes, a false negative might mean an undetected disease, and a false
positive could lead to unnecessary (and potentially painful or even harmful)
treatment.

For other machine learning tasks, such as churn prediction or resumé review,
analysts strive to remove racial or socioeconomic factors from the equation. But
in health care diagnostics, it may be both appropriate and advantageous to
consider them.

To the extent that an anomaly to be detected is connected with a certain group
of people, models can be tailored to that group. For example, sickle-cell disease



is more prevalent in parts of Africa and Asia than in Europe and the Americas. A
diagnostic system for detecting this disease should include enough samples of
Asian and African patients and acknowledgment of their ethnicity to ensure the
disease is identified.

In any event, it is important to ensure that these systems remain curated (i.e.,
that a medical professional verifies the results) and that the models are
correctly evaluated (precision, recall) before being put into production.

Security
Similar to the luggage example mentioned at the beginning of the chapter, home
or business security systems trained to identify anomalies present a problem of
the “different is bad” variety. These systems need to have enough data; in
terms of quantity and variability; to prevent bias that would make them more
likely to identify people of different races, body types, or socioeconomic status
as anomalies based on, for example, their skin color, size, or clothing.

Content Moderation
Blind reliance on anomaly detection systems for content moderation can lead to
false positives that limit or silence system users based on the language or types
of devices they use. Content moderation software should be monitored for
patterns of inappropriate blocking or reporting, and should have a user
appeal/review process.

Financial Services
Determining what harmful anomalies are in financial services applications is
complex. On the one hand, fraudsters are actively trying to steal and launder
money, and move it around the world. On the other hand, the vast majority of
transactions are legitimate services for valuable customers. Fraudsters emulate
normal business, making anomalies especially difficult to identify. As a result,
financial services organizations should consider first whether anomaly
detection is desirable in their use cases, and then consider the potential ethical
and practical risks.

For example, banks use customer data to offer mortgages and student loans. A
lack of diverse data could lead to unfavorable results for certain demographic
groups. Such biased algorithms can result in costly mistakes, reduce customer



satisfaction, and damage a brand’s reputation. To combat this, one should pose
questions (like the following) that can help check for bias in the data or model:

Fact check: do the detected anomalies mostly belong to underrepresented
groups?
Are there enough features that explain minority groups?
Has model performance been evaluated for each subgroup within the data?

Innovation
As we have seen, the term anomaly can carry negative connotations. Anomaly
detection by its very nature involves identifying samples that are different from
the bulk of the other samples - but, as discussed here, assuming that different
is bad may not be fair in many cases. Instead of associating faulty
interpretations with anomalies, it may be helpful to investigate them to reveal
new truths.

After all, progress in science is often triggered by anomalous activities that lead
to innovation!



Anomaly detection is a classic problem, common to many business domains. In
this report, we have explored how a set of deep learning approaches can be
applied to this task in a semi-supervised setting. We think this focus is useful
for the following reasons:

While deep learning has demonstrated superior performance for many
business tasks, there is fairly limited information on how anomaly detection
can be cast as a deep learning problem and how deep models perform.
A semi-supervised approach is desirable in handling previously unseen,
unknown anomalies and does not incur vast data labeling costs for
businesses.
Traditional machine learning approaches are suboptimal for handling high-
dimensional, complex data and for modeling interactions between each
variable.

In Chapter 4. Prototype, we show how deep learning models can achieve
competitive performance on a multivariate tabular dataset (for the task of
network intrusion detection). Our findings are in concurrence with results from
existing research that show the superior performance of deep learning models
for high-dimensional data, such as images.

But while deep learning approaches are useful, there are a few challenges that
may limit their deployment in production settings. Problems to consider
include:

Latency
Compared to linear models (AR, ARMA, etc.) or shallow machine learning
models such as OCSVMs, deep learning models can have significant latency
associated with inference. This makes it expensive to apply them in streaming
data use cases at scale (high volume, high velocity). For example, our
experiments show that inference with an OCSVM is 10x faster than with an
autoencoder accelerated on a GPU.

Conclusion
CHAPTER 7



Data requirements
Deep learning models typically require a large dataset (tens of thousands of
samples) for effective training. The models are also prone to overfitting and
need to be carefully evaluated to address this risk. Anomaly detection use
cases frequently have relatively few data points; for example, daily sales data
for two years will generate 712 samples, which may be insufficient to train a
model. In such scenarios, linear models designed to work with smaller datasets
are a better option.

Managing distribution shift
In many scenarios (including, but certainly not limited to, anomaly detection),
the underlying process generating data may legitimately change such that a data
point that was previously anomalous becomes normal. The changes could be
gradual, cyclical, or even abrupt in nature. This phenomenon is known as
concept drift. With respect to anomaly detection, one way to handle it is to
frequently retrain the model as new data arrives, or to trigger retraining when
concept drift is detected. It can be challenging to maintain this continuous
learning approach for deep models, as training time can be significant.

Going forward, we expect the general approaches discussed in this report to
continue evolving and maturing. As examples, see recent extensions to the
encoder-decoder model approach that are based on Gaussian mixture models,
[12] LSTMs,[13], convolutional neural networks,[14] and GANs.[15] As with
everything else in machine learning, there is no “one size fits all”; no one model
works best for every problem. The right approach always depends on the use
case and the data.
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